首页 工院讲座学术讲座-Multiscale Modeling of Deformation in Advanced Metallic Materials: From Atomic-scale to Meso-scale

学术讲座-Multiscale Modeling of Deformation in Advanced Metallic Materials: From Atomic-scale to Meso-scale

举办单位:材料科学与工程学院

讲座题目

Multiscale Modeling of Deformation in Advanced Metallic Materials: From Atomic-scale to Meso-scale

讲 座 人

周才智

讲座人

职称、职务

副教授

主持人

戴品强

讲座类型


自然科学

讲座对象

全校师生

举办时间

2018年5月18日10:00-12:00

□社会科学

举办地点

D1#305


周才智,美国密苏里科技大学,材料科学与工程系,副教授。2003年天津大学金属材料工程专业毕业大学毕业,2006年天津大学材料加工工程硕士研究生毕业,2010年美国爱荷华州立大学材料科学与工程学系博士研究生毕业,获博士学位,并且获得当年的优秀博士毕业生奖。主要从事于材料微观组织与宏观力学性能关系的研究,研究方法为与实验相结合的多尺度计算与模拟,在Acta material等国际权威刊物发表论文30多篇,目前主持美国国家自然科学基金一项和美国能源部材料基础科研课题一项,曾获得2017年度美国自然基金杰出青年奖。


讲    座

主要内容


    Advanced metallic nanostructured materials, such as metallic nanolayered composites, nanotwinned metals and gradient nano-grained materials, have drawn increased attention in the past decade because of their ultrahigh strength, increased ductility and elevated fracture toughness. Fundamental barriers must be resolved to manufacture such advanced nanostructured materials in bulk form and at reduced cost. Significant research has been conducted in recent years to understand the underlying mechanisms that control the mechanical behavior of these advanced nanostructured materials. Both experiments and modeling have revealed that as microstructure length-scales are reduced from micrometer- to nanometer levels, interfaces, such as grain boundaries and phase boundaries, become crucial in determining the mechanical behavior of nanostructured materials.Through the development of computer resources and novel experimental methods, macroscopic and phenomenological descriptions of mechanical behaviors are being substituted by multiscale approaches rooted in deeper understanding of microstructure- and defect-level processes during the deformation. Challenges remain in developing models with truly predictive capability in applications to nanostructured materials.This talk will review variousmodeling tools at different length scales and present a new hierarchical multiscale modeling framework to study mechanical behavior of nanostructured materials and provide a scientific basis for design and processing advanced materials with superior properties.